HEAT TRANSFER IN AN UNEVENLY COOLED ROD
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The method of [1, 2] is used to consider the heating of a thin semiinfinite rod from the end,
this being unevenly cooled on the sides; the basgis of the method is presgented.

Congider the problem
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T o = 0. 4)

We have to find the temperature gradient at the end of the rod qy = (3T/ 8x)x =, (this quantity at once deter-
mines the heat flux).

This formulation (which does not require the temperature distribution to be derived) is very fre-
quently encountered in applied studies, but to solve it by traditional techniques one has to find first of all
the value of T(x, t) for each instant and each point in the rod. The proposed method enables one to deter-
mine qy(t) without solving (1)~(4) completely, We represent (1) as a product of two operators:
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each of which is dependent only on the first derivative with respect to x; here bm and gy are unknown func-
tions. The operators for the fractional derivatives are defined as follows (3]:
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For v < 0 we integrate (6) by parts to get another form for the definition:
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The following relationships apply for the fractional derivatives of (6):
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(a bar denotes the Laplace transformation with respect to t).
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Fractional differentiation is familiar in analysis; the integrals of (6a) have been considered in detail
in many works [4, 5]. A detailed survey of the history of fractional differentiation in the nineteenth century

is to be found in [8]. The operation is frequently used in inexplicit form, as in transferring in Laplace-
transform space if one uses the operator p¥ (v fractional),

The language of fractional differentiation is most convenient for presenting the present method, which
consists as follows. We multiply the operators in (5) and use the property of (7) to equate the expressions
for identical powers of the derivatives to the corresponding expressions in (1), which gives us a system of
recurrence relationships for ay and by, We find that @, =bp, g;=1, ¢ = 0 and

2a2 = ?(x):
2a, = a,
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We now consider the equation formed by the right factor of the operator in (5):
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It will be shown below that this equation has a solution satisfying (2)~(4) subject to certain reservations;
this is the basic content of the method. The equation is of first order in x, and the right factor has solu~
tions that automatically satisfy the condition of being bounded at infinity, and so one can consider (12) in
what follows in place of (1). This is very much more convenient for the present problem, gince it enables
one to determine the flux at the boundary of the region directly,

If the series in (12) converges uniformly in t, we apply a Laplace transformation with respect to t
to (12) and use (10) to get
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The latter can be integrated, and condition (2) is met:
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for all x for p > p*, then the series in (13) converges absolutely and uniformly for all p > p* and repre-
sents a solution to (12) in operator form. Then there exists an original for T(x, p) for all 0 < t < «: the

solution to (13) satisfies also (3) if hm V an(x)p(1 -n)/2, 0(Rep > 0), which is true, for instance, for an
'0
analytical vy (x) such that l_nn v (x) = const = 0; condition (4) is also satisfied if T,(0) = 0, since

hm T(x, ) = lim T (x, p) = lim pT, (p) exp [— } px — O (1/V p)
1= p—»w
for all x (checks on particular examples show that the method gives a correct result also for T,(0) = const).
As the solution to (12) is also a solution to (1) under the above condmons then (13) will be simultaneously
a solution to (1)-(4) in operator form .

If (14) is met, the series in (12) converges absolutely and uniformly for all x and t; the definition of
(6a) indicates that for v < 0 one can use the theorem on the mean to obtain an estimate for the fractional
derivative of the bounded function
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If T|t=y = 0, we integrate (6) by parts and apply the theorem on the mean to get
Coger | aT | vy (15a)
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As T and 3T/ 3t are bounded for a bounded T,(t), as (13) shows, the series in (12) converges better than
the absolutely and uniformly convergent series
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It follows from the estimates of (15) that derivatives of order v = 1/2 are continuous in t for t — +90 for
To(0) = 0; also, the quantities an{x) are continuous for x = +0 for the analytical function v, so we consider
the limit of (12) for x — +0 to write down at once the solution to the problem in the form

1—n

E) . 2
—a) = ¥ a0 Lo (16)

n=y dt 2
Then the derivation of g(t) for an arbitrary y(x) amounts to determining a,(0) from (11); we enumerate
again the conditions under which the proof has been derived: 1) T,(t) is a bounded differentiable function
such that Ty(0) = 0; 2) y(X) = 0 is analytical and such that vy (») = const. Also, an(x) must meet (14).

We do not know the general conditions for (14) to be met, but we have obtained a sufficient condition,
Consider the accessory operator L specified by the relationship

; d | Qa7
LY (x) =] — 4 y(2x X).
) [dx -y )]i()
We seek L as a series in fractional derivatives:
1
. S az
L = ¥ k) S 0. (18)
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We substitute (18) into (17) and use (7) and (8) to get a system of recurrence relationships for hp(x):
hy =1,
2h1 = Y (2x),

1
2h, - —hf—( 2 )h;,
: 1
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If y(x) = 0 and all 'y(n) (X) = 0, the signs of all terms on the right in each equation are identical, while
the signs of the hy(x) alternate; it is clear that the |hy| exceed the terms {cn| of the system

2cl. =9 (x)»

2c, = ¢y,

265 == €y - €46y - €16y (20)
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which in turn exceeds system (11), as [ep| = |apy|.
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On the other hand, we can find the exact values of the hp(x) on the basis that
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as can be seen by direct test on (17); we expand (21) as the series of (18) with the condition of (8) to get
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As |ay 4| = |en] = |hp| and as lim n )~ O0(1/vVn), we get the sufficient condition for (14) to be met:
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Nee oo
If any of the derivatives y(n) are negative, the relevant hy should be determined from (23), with v
replaced by y*, which is derived from v by replacing all the negative derivatives by positive ones.

The following are the expressions for some of the first agy(x):
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We now discuss the advantages and disadvantages of this method relative to the classical method of
finding q, from (1)-(4), which is as follows. Equation (1) after Laplace transformation becomes
| &
'|_ dx?
We find the solution to the latter that satisfies the conditions of (2)-(4), which is differentiated and written
for x = 0; after transfer to the original we get the functional relationship between q, and T.

—p+y@iliT=0. (25)

The advantages of this method are as follows: 1. We do not need to solve (25) with variable coeffi-
cients; the operations involved in finding the a, appearing in (16) are very simple, since they involve only
differentiation and algebraic transformation. In passing we have found a general solution to (25) in the
form of (13) that satisfies the condition of being bounded for x — «. 2. The method is applicable without
substantial change to problems with inseparable variables [1, 2], which cannot be solved by the classical

method.

Deficienciesof the method: 1. The solution is obtained as a series of special form convenient for
practical calculations for not very large t. To simplify the solution for a wide range in t one has either
to sum the series in (16) or else to substitute manually a sufficiently large number of a, from (11). Then
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the classical method is more applicable if the exact solution to (25) is known, 2, The solution can be ob-
tained by this method in a very simple fashion only for a semiinfinite region; if the region is finite, one
has to consider solutions given by both factors in (5). It is found that then it is impossible to derive exact
values for the ap andbpyin (5) for arbitrary y. On the other hand, the solution by classical methods for
a finite region is in nosway more complicated than that for an infinite one. For instance, {6, 7] give a
solution for a finite interval, from which one can easily find the relationship between g, and T, (in our
symbols),

Example, Let Ty(t) = at, y(x) = gx; (23) is met, and then from (16) with (9) and (11) we get
' ——o;‘-lq (tj A 2 5 2 158 s 295ﬁ4 f1372
’ "2 T 32 TI'(92 ' 64 I'() b5l2 TA52

T@32 (26)

For a steel rod (1 = 2-1079 m?/sec, R = 1072 m) with air blown over it at room temperature we
assume B = 2+10? 1/m?, and the last term written out in (26) is 1% of the first up to t ~ 1200 sec.

This method is applicable also to calculating periodic processes, where instead of (6) we use a dif-
ferent definition for fractional differentiation. For the periodic function cos wt we have

d":;)smt == Y COs (mt - —;- v) , ’ 27
v .

and the solution for a periodic Ty(t) is given by (16), where the expression of (27) is to be understood for
the symbols for fractional differentiation,

I am indebted to Ya. S. Uflyand and A, 8. Zil'bergleit for detailed discussion of the work.

NOTATION
X is the coordinate;
t is the time; ,
T is the temperature;
T, is the temperature at rod end;
dy is the temperature gradient at rod end;
a,b,c,h are the coordinate functions in the fractional derivative series;
L is the auxiliary operator; »
R is the rod radius;
P is the variable in Laplace transform variable;
o, 8 are constants in the numerical example;

v is the variable heat-transfer coeificient;
" is the thermal diffusivity;

w is the frequency;

m,n,K,S, 4, v are the summation and differentiation indices.
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